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4.  SUMMARY OF SURVEY AND CASE STUDY DER BENEFITS 
 
 
A review of the surveyed DER installations and the more detailed case studies reveals the variety of 
benefits that accrue to the owners, energy users, and the utilities.  Benefits to other parties are not 
typically revealed by such survey instruments.  Also, note that in today’s economic environment, there are 
no price signals to reveal the value of ancillary services that are available from DER, so that those 
benefits are also not revealed by the survey. 
 
The broad survey noted each installation owner’s reasons for installing DER, and these reasons are a good 
summary of the owners’ perceived benefits.  Some owners responded with a single reason, others with 
four or five.  Figure 11 summarizes these reasons.  The most common response was to take advantage of 
cogeneration, which increases the overall energy-use efficiency.  Cost reduction was often cited by these 
same customers.  Reliability improvements were nearly as frequent; these included both outage avoidance 
and power quality considerations.  Meeting peak demands was frequently cited as a reason by utility-
owned DER installations and was sometimes directly identified as addressing a grid (transmission or 
distribution) constraint.  A significant fraction of the DER were installed in response to regulatory 
signals; that is, they were designed to avoid peak demand charges or to enable the customer to participate 
in an interruptible rate structure.  Both end-users and utilities cited the avoidance of price spikes as their 
reason for installing DER. 
 

 
 
A review of the more detailed case studies reveals similar benefits; again cogeneration, reducing costs, 
increasing reliability, and price protection were leading incentives.  One case study was also a clear 
example of a localized transmission constraint, while two other case studies mentioned such constraints as 
possible factors. 
 

Fig. 11.  Reasons cited for installing DER. 
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According to this limited review, a majority of the DER tended to fall into three major categories.  Many 
were installed to meet base load growth or replacement; these typically employ cogeneration and were 
recognized as reducing overall energy costs.  Others were installed to meet peak loads, sometimes by a 
customer avoiding peak demand charges and sometimes by a utility with a need to serve these less 
frequently encountered load levels.  The selection of DER technology for such peaking applications 
tended toward those with a lower capital/operating cost ratio in recognition of their relatively low hours of 
use.  The third major category of installations was associated with technology demonstrations.  The large 
proportion of DER demonstrations is closely associated with the rapid pace of change and development in 
this field as well as with the recognition of DER benefits by both public and private funding 
organizations. 
 
After the well-understood economic benefits come the more complex issue of reliability benefits.  Some 
of the cases discussed the ability of DER to serve as a back-up power source during an utility power 
outage.  Several discussed the ability of DER to enhance the local power quality, providing a measure of 
insurance against not only outages but also against voltage sags.  This broader area of power quality and 
ancillary benefits has been more fully explained in Ref. 2, but a rigorous exploration of DER benefits 
must address them as well.  These ancillary benefits include voltage support or stability, VARs, 
contingency reserves, and black start capability. 
 
Many customers need a higher level of power quality than is presently supplied by their local utility or 
distribution company.  These customers include healthcare, communications, semiconductor 
manufacturing, some food processing, etc.  Voltage sags and interruptions for these customers cause 
outages which result in a significant economic impact from spoiled products, lost raw materials, lost 
production time, etc.  These customers are aware that they are suffering from a problem with power 
quality, but the cause of the problem, the extent of the problem, and the solution are not always well 
known.  A few industries have explicitly defined their power quality requirements.  Their work offers 
insight into the impacts of poor power quality on other customers as well and, therefore, may be useful in 
determining the value of DER power quality improvements. 
 
Semiconductor manufacturers face an extreme cost penalty from voltage sags that interrupt their 
manufacturing process. The Semiconductors Manufacturer’s Institute (SEMI) has developed a power 
quality requirements curve (see Fig. 12) that gives the minimum voltage vs time that their equipment is 
expected to ride through.  With this curve, they can specify tools such as adjustable speed drives or 
controllers that are designed to function during the anticipated power quality events.  Voltage sag 
susceptibility information is now available on a range of equipment from computers and microprocessors 
to relays and solenoid valves.  By defining their power quality susceptibility level, the customer could 
design their DER level to exactly match their power quality needs.  Interestingly, in areas with the worst 
problems with voltage sags, such as at the ends of distribution feeders, ancillary services such as voltage 
regulation and supplementary reserve are most needed.  Further, inverter-based DER (such as 
microturbines and storage devices) can be designed such that the full dynamic voltage support capability 
of their active power electronics system is available even when real power is not being produced, i.e., 
when the DER is turned off and no fuel is being consumed.  Appropriately compensating the DER owner 
is critical for the utility to be able to exploit this capability.   
 
The survey and case studies have identified benefits enjoyed by the customers, and sometimes by the 
utilities.  However, other members of society also gain from the use of DER.  When cogeneration 
increases the overall energy conversion from less than 40% to more than 80%, economic and 
environmental benefits almost always follow.  The economic benefits can include an increase in price 
stability for other customers, a reduction in the demand for fuel supplies with a corresponding reduction 
in their cost, a delay in energy price increases associated with a delay in transmission/distribution system  
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infrastructures.  There can be other, more indirect, economic benefits to society as well.  For example, if 
production waste and other costs decrease, product prices may fall as well.   
 
The environmental benefits are more complex and may not occur in the same geographical location as the 
DER.  For example, if the DER is placed in an urban area, combustion emissions may be reduced in some 
more remote, less densely populated region but may increase in that local urban environment.  In addition 
to the geographic complexity, the net impact on emissions depends on the DER technologies and on the 
alternative central station technology.  There is also an efficiency gain associated with the production of 
electricity close to the point of use because that reduces transmission line losses.  Some DER 
technologies, such as cogeneration, are more efficient than central station power generation.  The net 
impact of DER on emissions also depends on the fuel mix used to generate the region’s central station 
power.  Figure 13 is a prototypical fuel supply curve.  If the DER is gas-fueled and displaces gas, the 
emissions reduction will depend on the specific technologies and efficiencies involved.  If gas-fueled 
DER displaces coal-fired combustion, there will almost always be a net improvement in the environment, 
although as described above, that improvement may not be enjoyed in the same location as the DER 
installation.   
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Power Supply and Demand
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Fig. 13.  Prototypical regional electricity production fuel mix curve. 
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5.  ANALYSIS METHODOLOGY 

 
The survey and case studies helped to identify benefits associated with installing and operating DER at 
various sites.  In particular, benefits associated with electric system reliability, power quality, and reduced 
costs for providing electric power to the site were noted.  However, expanding from these anecdotal 
examples to an overall understanding of the scope and magnitude of DER benefits is not straightforward.  
Indeed, the efforts described in this report are seen as but the first step in a more comprehensive study of 
DER benefits. 
 
As in the preceding case studies, the focus of site-specific assessments is typically limited to two parties, 
the owner/user and the local utility.  Rarely are the impacts on other stakeholders, including 
interconnected distribution utilities, transmission system operators, generating system operators, the local 
and regional population, local and regional industry and businesses, various levels of government, and the 
environment considered.  The goal of this study is to quantify benefits that accrue broadly across a region, 
recognizing that DER installations may have local, regional, and national benefits.  This complexity will 
require the development of an assessment methodology that builds upon existing technology and 
econometric assessment tools. 
 
A literature review (Appendix A) of current, pertinent industry periodicals and articles was conducted to 
build upon the observations from the site survey and case studies.  This review helped identify data 
sources that will be especially helpful in constructing the assessment methodology. 
 
Despite their advantages, DER installations face a plethora of deployment obstacles.  Such barriers have 
been previously described and documented.6  The barriers may be technical, business practice, economic, 
regulatory, or environmental and may add considerable uncertainty to a DER project’s viability.  Many of 
these issues are in a state of flux and will, therefore, be examined by defining multiple scenarios.  For 
example, considerable effort has been directed at the DER interconnection standard issue, notably the 
IEEE P1547, IEEE Std 929, UL 1741, the Public Utility Commission of Texas’ Distributed Generation 
Interconnection Manual, and several other interconnection guides and manuals.18-21  Because the outcome 
of these efforts is anything but certain, this benefits methodology will examine several possible 
interconnection arrangements.  Likewise, the Regulatory Assistance Project has closely examined 
regulatory issues associated with DER.  Their work will serve as the foundation for multiple regulatory 
scenarios within this current study.4,5,8,9 

 
Just as this initial evaluation began with specific case studies, the aggregate study will also start with 
prototypical DER installations.  These will be constructed using results from the recently published 
technical evaluation of the feeder-level performance of DER.10  Progressing from this prototypical DER 
installation model to a more global assessment will be accomplished by taking advantage of a number of 
existing tools.22-24  These tools have been used in the past to analyze the impact of policies and 
technologies on air emissions, to study the impact of hydropower facility relicensing, to study the 
potential reductions from biomass cofiring on a local, regional, and national level, and to study the cost 
impact of multi-emission regulations vs. emission by emission regulation.24-26  This set of economic 
modeling tools were recently expanded to include an assessment of combined heat and power in federal 
buildings.  Although further tool development will be necessary, these modifications provide a solid 
foundation for this broader assessment of regional distributed energy benefits.  
 
The resulting integrated set of tools will form one macroscopic economic model and will be used to 
evaluate the effect of distributed energy resources on a regional basis.  A detailed recent historical record 
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reflecting the actual prices and generating equipment for a selected region will be used as well.  Two 
cases will be examined initially; first, a base case without access to distributed resources; and second, a 
case that implements sufficient DER to examine the impact of market structures on the DER’s economics.  
Using these base cases, parametric studies will examine the impact of factors that affect the penetration of 
distributed resources such as ancillary services markets, need for reliability, or real-time electricity 
pricing.  An early report will be presented describing the analysis methodology and the proposed 
parametric values. 
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6.  CONCLUSIONS 
 
 
A brief survey of ~160 existing DER installations and four case studies of specific installations show that 
DER is now being used in every U.S. state and is providing increasing numbers of owners with high 
quality and reliable electric power and, with cogeneration, highly efficient energy utilization.  Customers 
are reaping cost savings and gaining improved power quality and reliability.  They are also increasing 
their energy security; a benefit gaining increased attention since the events of September 11. 
 
Interconnected utilities are also benefiting as customer-owned DER helps to mitigate distribution system 
capacity constraints, provide voltage support, improve the stability of the system, reduce line losses and 
line congestion, and defer expansion of distribution and transmission facilities.  Society benefits from a 
more secure and stable electric power system and reduced environmental releases. 
 
Most DER assessments are limited to two parties—the owner/user and the local utility.  Rarely are the 
collective benefits (or impacts) on other stakeholders, including interconnected distribution utilities, 
transmission system operators, generating system operators, other local utility customers, local and 
regional industry and businesses, various levels of government, and the environment considered, let alone 
quantified.  The objective of the current study is to develop a methodology capable of systematically 
assessing the combined effects of numerous factors associated with increasing penetrations of DER.   
 
An analysis approach has been outlined in this report to achieve these goals.  The analysis will begin with 
a time-series evaluation of a variety of DER technologies and utility grid situations to provide 
prototypical values for regional econometric models.  Multiple scenarios will be evaluated to consider the 
wide range of possible regulatory and technical environments.  Since costs and benefits are not always 
evenly distributed, one sector may have relatively higher costs and lower benefits than another.  This 
introduces important issues of cross subsidy, which need to be fully understood when developing market 
rules.  The markets, if properly designed to reflect these externalities, can be powerful tools for prompting 
desirable investment and operating responses.  However, recent experience in California shows that an 
incomplete understanding of the distributed benefits and costs can lead to an inappropriate market design 
and disastrous economic consequences.  Ultimately, therefore, a more complete picture of the benefits 
associated with distributed resources will provide invaluable guidance for future policy decisions that 
impact a host of market rules. 
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Therese K. Stovall
stovalltk@ornl.gov

P.O. Box 2008
Oak Ridge, TN 37831-6070

(865) 574-0329
fax(865)574-9354

March 27, 2002

To: Distribution
From: Therese K. Stovall
Subject: Additional DER Survey Data Analysis

Per a request from David Bassett, an additional analysis of the survey data reported by
Electrotek as a part of the Phase I DER Benefits Study was completed and is reported
here.  If you have any questions, please let me know.

A survey was previously described in which the owners’ reasons for installing
Distributed Energy Resources were reported for 162 installations in the U.S.(see
ORNL/TM-2001/290) However, among these 162 installations, 49 were demonstration
units, usually fuel cells or microturbines.  Another 33 installations contained incomplete
information about either the type or size of the DG installation.  This update shows the
distribution of the survey results for the data set without these demonstration units, and
the data set with both the demonstration and incomplete cases removed.

Two fuel cell cases remain in this data set.  They are both situations with extreme
environmental sensitivities, one in New York’s Central Park and the other on an Indian
Reservation.  In both cases, remote (relative to the local grid) power needs with minimal
environmental impact drove the technology selection.  The five microturbine cases that
remain in this data set are split almost evenly between utilities burning waste gas, and
customers taking advantage of cogeneration economics and rate structure incentives. 
The remaining PV and wind sites represent situations remote from power lines (a cattle
ranch) and utilities generating “green” power to meet market demands.

For the most restrictive data set, that with both the demonstration and incomplete cases
removed, economic reasons were cited by 45%, environmental reasons by 16%, and
meeting peak demands by 39%.  Half the installations were owned by ‘power’
companies, either utilities, or third party energy supply companies.  These power
company installations represent about 2/3 of the installed capacity reported in this
survey.  A total of 32 installations cited reliability concerns as a reason for installation,
and for 11 of these 32 installations, reliability was the only reason given.  More than half
of the customers are installing DER to reduce their “uncertainty” factor, defined here by
a combination of reasons including reliability, price protection, and fuel flexibility; these
add up to 43 out of 80 cases.   Figures 1-7 summarize the results for this data set.

Cogeneration was the dominant reason given for installing DER in this survey.  An
examination of which DER technologies are used with cogeneration is shown in Fig. 7. 
It is interesting to note that the gas-fired reciprocating engines are just as likely to
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Figure 1 Number of cases citing each reason for their DG installation, demonstration and
incomplete cases deleted.

provide cogeneration as the combustion turbines.  These gas-fired reciprocating
engines tended to be larger in capacity and to be owned by customers, compared to the
diesel-fired reciprocating engines, which tended to be smaller in capacity and to be
leased by utilities.  The diesel-fired reciprocating engines, as well as the PV and wind
installations, were least likely to employ cogeneration.

For the data set without demonstration cases, but which still contains those cases for
which only partial information is available, please see Figures 8-13.

There are also several situations reported in the survey which don’t translate well to
graphs and charts.  One utility is using DG to serve a short-term mining load.  A
communications company is placing DG at multiple sites to both provide back-up power
and to serve as their main power source until the utility grid reaches their more remote
sites.  A chain of car washes and gas stations has installed small DG units and taken
their loads off the grid completely.  Another utility is contracting with existing back-up
DER owners for control of their units to meet peak demands.  Eleven universities are
included in the data, all but one of which use cogeneration to meet their campus heating
and/or cooling loads. 
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Figure 6 Number of installations per total DER installation electrical output,
demonstration and incomplete cases deleted.
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Figure 7 Portion of installations employing cogeneration for each technology
type, demonstration and incomplete cases deleted.
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Figure 12 DER Installation size distribution, demonstration cases deleted.
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